ID 原文 译文
10434 目前,分离式电磁矢量传感器相干源估计问题研究处于起步阶段,现有方法最多只能解6个相干信号源。 At present, separate coherent source electromagnetic vector sensor estimation problem research in its infancy, existing methods can at most 6 coherent signal source.
10435 研究空间平滑算法在分离式电磁矢量传感器阵列中的应用,以解决该问题。 ‭Study spatial smoothing algorithm in the application of separate electromagnetic vector sensor array, in order to solve the problem.
10436 首先对平面阵列进行两维子阵划分,然后通过选择矩阵对该划分子阵进行抽取,最后对各抽取子阵进行空间平滑处理。 ‭First to two-dimensional planar array submatrix division, and then by selecting matrix to extract, delimit the molecular array finally space of extracting submatrix smoothing processing.
10437 完成两维空间平滑后,利用子空间旋转不变技术和矢量叉积算法完成目标的两维波达方向估计。 ‭Use after completion of two dimensional space smooth rotation invariant subspace technique and algorithm of the vector cross product meet the target of two-dimensional doa estimation.
10438 所提方法在解决共点式电磁矢量传感器互耦严重、硬件设计困难的同时,采用稀疏阵列提高了波达方向测量精度,且该方法不受制于6个相干入射信号源。 ‭Proposed method in solving point electromagnetic vector sensor mutual coupling is serious, the hardware design difficult at the same time, the doa using sparse arrays to improve the accuracy of measurement, and the method is not subject to six coherent incident signal source.
10439 计算机仿真结果证明了所提空间平滑方法在均匀分离式电磁矢量传感器平面阵中解相干的有效性。 ‭The computer simulation results show that the proposed spatial smoothing technique in uniform separate electromagnetic vector sensor planar array coherent solution is effective.
10440 量测驱动的自适应新生目标强度基数概率假设密度(adaptive target birth intensity cardinalized probability hypothesis density,ATBI-CPHD)滤波器可以在新生目标强度未知的情况下进行多目标跟踪,然而该方法利用所有量测产生新生目标,没有考虑关联问题。 Measurement driven adaptive new target strength base probability hypothesis density (the adaptive target birth intensity cardinalized aim-listed probability content, density, ATBI - CPHD) filter can in the new target strength in multiple target tracking under the condition of unknown, however, this method use all measuring new goals, not considering correlation problem.
10441 为此,本文提出了一种基于数据关联的改进算法。 To this end, this paper proposes a improved algorithm based on data correlation.
10442 首先,给出了ATBI-CPHD在高斯混合CPHD(Gaussian mixture CPHD,GMCPHD)框架下的实现。 Inventory first, gives the ATBI - CPHD in Gaussian mixture CPHD (Gaussian mixture CPHD, GMCPHD) under the framework of implementation.
10443 其次,在GMCPHD滤波框架下采用一种基于量测标签的方法进行量测-估计关联,并引入高斯元标签进行航迹保持,在此基础上提出了一种航迹管理方法。 Second, under the GMCPHD filtering framework using a method based on measurement of the label to link - estimation, and carries on the track is keep introducing gauss meta tags, on the basis of a track management method are put forward.