ID 原文 译文
6444 根据所得的同步所需的时间戳和位置信息,计算出频率偏斜和相位差,进而更新本地时钟,实现时间同步。 According to the synchronization of the time stamp and location information, calculate the frequency deviation and phase difference, and then update the local clock, time synchronization.
6445 仿真结果表明,与现有机制相比,该机制减少了控制帧发送次数,在维持较好吞吐量的基础上,达到了降低时间偏差的目的,并且提高了能量效率。 The simulation results show that compared with the existing mechanism, this mechanism reduces the control frame sending number, on the basis of maintaining good throughput, achieved the purpose of reducing the time deviation, and improve the energy efficiency.
6446 研究了多枚导弹同时拦截高机动目标情况下的制导律设计问题。 Studied the missile intercepting high maneuvering targets at the same time more cases of guidance law design problem.
6447 基于终端滑模控制方法和一致性原理设计了多枚导弹协同制导律,实现所有协同导弹的视线角速率在有限时间内收敛到零,视线角收敛到期望的角度。 Designed on the basis of the principle of terminal sliding mode control method and the consistency of multiple cooperating missile guidance law, realize the coordinated missile's line of sight angular rate of all converge to zero in finite time, Angle of sight converge to the desired Angle.
6448 在视线方向上,能够保证多枚导弹具有相同的拦截时间。 In the line of sight direction, can ensure more missiles with the same intercept time.
6449 基于双曲正切函数,所提出的未知上界的在线估计算法有利于减小输入通道的切换增益和抖动。 Based on hyperbolic tangent function, the proposed on-line estimation algorithm of unknown upper bound is helpful to reduce the input channel switch gain and jitter.
6450 利用Lyapunov稳定性理论,对所设计的闭环系统给出了严格的稳定性证明。 Designed by using Lyapunov stability theory, the stability of the closed-loop system gives the strict proof.
6451 在仿真研究中,进一步验证了所提出的协同制导律的有效性。 In the simulation study, further to verify the effectiveness of the proposed cooperative guidance law.
6452 为解决二元退化产品可靠性建模困难,提出了基于马氏距离(Mahalanobis distance,MD)的二元退化产品可靠性分析方法。 Reliability modeling difficulty to solve the dual degradation products, based on the markov distance, Mahalanobis short, MD) binary degradation product reliability analysis method.
6453 首先引入MD,将二元退化数据降维至一元MD,并采用蒙特卡罗方法确定MD失效阈值; Firstly, MD, the dual degradation data dimension reduction to one yuan, MD, and monte carlo method is adopted to define the MD failure threshold;