ID 原文 译文
54327 从而导致实时航迹与历史航迹相比有一定的差异,使得仅基于历史航迹数据的航迹预测模型的预测性能变差。 There is a certain difference between the real-time trajectory and the historical trajectory, and the prediction performance of the trajectory prediction model based on historical trajectory data becomes worse.
54328 为解决该问题,提出了一种基于在线更新长短期记忆(Long Short-Term Memory,LSTM)网络的短期4D航迹预测算法, To solve this problem, a short-term 4 D trajectory prediction algorithm based on online-updating long short-term memory(LSTM) is proposed.
54329 该算法由基于历史航迹数据的预测模型初始化参数训练和基于实时航迹数据的预测模型参数在线更新两部分构成。 The prediction algorithm is composed of two parts: the initial parameters training of the prediction model based on historical trajectory data and the parameters online-updating for the prediction model based on real-time trajectory data.
54330 首先建立基于LSTM神经网络的航迹预测模型, The trajectory prediction model is established through the LSTM neural network first.
54331 使用历史航迹数据进行训练并保存训练完成的预测模型参数, The historical trajectory data are used to train the model and the trained parameters of the model are saved.
54332 然后使用实时航迹数据对航迹预测模型进行在线训练并微调参数, Then, the real-time trajectory data are used to retrain and fine-tune the parameters of the trajectory prediction model.
54333 使用在线更新参数后的预测模型实现4D航迹短期预测,以期达到提升预测准确度的目的。 The online-updating prediction model is used to predict the short-term 4 D trajectory data, so as to achieve the purpose of improving the prediction accuracy.
54334 利用实际航迹数据对算法的性能进行验证, The actual trajectory data are used to verify the performance of the algorithm.
54335 结果表明新方法能够考虑实时飞行过程中各因素对航迹产生的影响,有效提升经度、纬度、高度和时间的预测准确度,并具有良好的泛化能力。 Experimental results show that the new prediction model with a good generalization ability can take into account the influence of various factors on the trajectory during the real-time flight process and improve the prediction accuracy of longitude, latitude, height, and time effectively.
54336 复杂的应用场景下,平台速度不能保持恒定。 In complex application scenarios, the velocity of radar platform cannot be kept constant.