ID 原文 译文
53717 基于矢量量化变分自编码器( Vector Quantized Variational Autoencoder,VQVAE) 的语音转换系统是国内外语音转换领域研究的一大热点,但是其较差的转换音质限制了模型的应用。 The vector quantized variational autoencoder ( VQVAE) based voice conversion system is a hot spot in voice conversion area, but the poor quality of converted speeches limits its wide use.
53718 本文在 VQVAE 的基础上提出一种改进的矢量量化正则变分自编码器 ( Vector Quantization Regularized Variational Autoencoder,VQ- REG-VAE) To address this problem, this paper proposes an improved model called vector quantization regularized variational autoencoder ( VQ-REG-VAE) .
53719 在训练时,矢量量化退化为正则化项, During training, vector quantization works as the regularization term.
53720 通过矢量量化的正则约束让编码器学习生成说话人无关的语义特征,同时让解码器学习将说话人特征融合到语义特征中。 Through the regularization of vector quantization, the encoder learns to generate speaker-independent linguistic features while the decoder learns to fuse the speaker features into linguistic fea- tures.
53721 在转换时,可以去掉矢量量化这一正则化项,通过编码器和解码器就能实现语音转换。 During conversion, voice conversion can be realized through the encoder and the decoder.
53722 由于转换时没有进行矢量量化,语义特征信息得以更好保留。 Since vector quantization is not used during the conversion, more linguitic information can be preserved.
53723 客观和主观实验都表明:基于 VQ-REG-VAE 模型的转换语音在不降低相似度的前提下,音质比 VQVAE 模型有显著的提升。 The objective and subjective experiments have shown that, compared with VQVAE model, VQ-REG-VAE model achieved significant improvement in speech quality and comparable results in speaker similarity.
53724 在信源数目未知的欠定盲源分离问题中,精确地估计混合矩阵是具有挑战性的问题。 In underdetermined blind source separation with unknown number of sources, it is challenging to estimate themixing matrix precisely.
53725 针对现有方法在病态条件下( 某些混合向量的方向接近) 不能准确估计信源数目、易受离群点干扰的不足,提出了一种基于方向性模糊 C-means K-means 的混合矩阵估计方法。 Two major shortcomings of existing methods are that they cannot estimate the number of sourcescorrectly under ill-conditioned conditions ( namely, the directions of some mixed vectors are close) and they are susceptibleto outliers. To deal with these issues, a mixing matrix estimation method based on directional fuzzy C-means ( DFCM) andK-means is proposed.
53726 该方法首先通过方向性模糊 C-means 对观测信号进行预聚类,通过预聚类可以实现: First, the observation signals are pre-clustered by DFCM, such that we can: