ID 原文 译文
42506 利用三路脉冲金属有机化学气相沉积 ( MOCVD) 技术,在半极性 r 面蓝宝石衬底上成功生长了非极性 a AlGaN 外延层。 The nonpolar a-plane AlGaN epitaxial layer was successfully grown on the semi-polarr-plane sapphire substrate by three-way pulsed-flow metal organic chemical vapor deposition (MOCVD)technology.
42507 使用高分辨率 X 射线衍射系统、扫描电子显微镜、原子力显微镜、光致发光测试系统对 AlGaN 外延层的结构、表面形貌和光学特性进行了测试和表征。 The structure, surface morphology and optical property of the AlGaN epitaxial layer weremeasured and characterized by high resolution X-ray diffraction system, scanning electron microscope, atomic force microscope and photoluminescence test system, respectively.
42508 结果表明,与常规三路脉冲 MOCVD 技术相比,利用新型三路脉冲 MOCVD 技术生长的非极性 a面 AlGaN 外延层的均方根粗糙度降低了 76. 9%,且带边激子发光峰的半高宽降低了 24. 0%。 The results show that comparedwith the conventional three-way pulsed-flow MOCVD technology, the root-mean-square roughness of thenonpolar a-plane AlGaN epitaxial layer grown by the new three-way pulsed-flow MOCVD technology isdecreased by 76.9%, and the full width at half maximum for band edge exciton emission peak is decreased by 24.0%.
42509 因此,新型三路脉冲 MOCVD 技术能够有效地抑制生长非极性 a AlGaN 外延层所使用的 Al 源( TMAl) N ( NH3 ) 前驱体之间的气相寄生反应产生的缺陷,从而显著改善非极性 a 面AlGaN 外延层的表面形貌, Thus, due to the effective inhibition of defects originated from the parasitic gas phasereactions between Al source (TMAl) and N source (NH3) precursors used to grow the nonpolar a-planeAlGaN epitaxial layer by the new three-way pulsed-flow MOCVD technology, the surface morphology ofthe nonpolar a-plane AlGaN epitaxial layer is significantly improved.
42510 同时提高外延层的光学性能和晶体质量。 Moreover, the optical property andcrystalline quality of the AlGaN epitaxial layer are enhanced.
42511 介绍了一种锗硅 ( Si1-x Gex ) 沟道双栅 ( DG) 负电容 ( NC) 隧穿场效应晶体管( TFET) ,在 Sentaurus TCAD 软件中通过耦合 Landau-Khalatnikov ( LK) 模型的方法对器件进行了仿真。 A Si1-xGex channel double-gate (DG) negative-capacitance (NC) tunneling field-effecttransistor (TFET) was introduced and simulated by coupling with Landau-Khalatnikov (LK) model inSentaurus TCAD software.
42512 首先分析了沟道中锗摩尔分数对 DG TFET 性能的影响。 Firstly, effects of germanium mole fraction in the channel on the performanceof the DG TFET were analyzed.
42513 DG TFET 的基础上引入负电容结构得到 DG NC TFET,并通过耦合 LK 模型的方法对不同铁电层厚度的 DG NC TFET 进行了仿真研究。 Then, the negative capacitance structure was introduced to get the DGNC TFET on the basis of DG TFETs and DG NC TFETs with different thickness of the ferroelectric layerwere simulated by coupling the LK model.
42514 最后,从能带图和带间隧穿概率的角度分析了负电容效应对器件性能的影响。 Finally, the influence of the negative capacitance effect on theperformance of the device was analyzed from the point of view of energy band diagram and band-to-bandtunneling probability.
42515 仿真结果显示,在 Si0. 6Ge0. 4沟道 DG TFET 基础上引入 9 nm 铁电层厚度的负电容结构之后,DG NC TFET的开态电流从 1. 3 μA ( 0. 65 μA /μm) 提高到了 29 μA ( 14. 5 μA /μm) ,同时有 7 个源漏电流量级的亚阈值摆幅小于 60 mV / dec。 Simulation results show that the on-state current is increased from 1.3 μA(0.65 μA /μm) to 29 μA (14.5 μA /μm) and the subthreshold swing at seven orders of magnitude of source-drain current is less than 60 mV / dec after introducing the negative capacitance structure with aferroelectric thickness of 9 nm based on Si0.6Ge0.4 channel DG TFET.