ID | 原文 | 译文 |
24305 | 为了提高手机位置不固定时的动作识别率,该文提出一种基于层次分类的动作识别方法。 | To improve the recognition rate when the phone's displacement is unfixed, a hierarchical classification-based activity recognition method is proposed. |
24306 | 该方法将动作识别分为多层,每一层包含一个分类器。 | The activity recognition process is divided into multiple layers in this method, and each layer contains a classifier. |
24307 | 在训练某一层分类器时,首先根据本层训练样本集进行特征选择并训练分类器。 | For training each layer's classifier, it runs the feature selection algorithm first, and the classifier is trained based on the selected features. |
24308 | 然后使用训练得到的分类器对训练样本分类,并计算分类结果的可信度。 | Then, the trained classifier is used to classify the training set, and each sample's classification confidence is calculated. |
24309 | 最后通过对低可信度的样本进行剪枝得到下层分类器的训练样本。 | Finally, samples whose confidence is lower than the hierarchical threshold are selected as the next layer's training set. |
24310 | 对未知类别的样本分类时,首先使用第 1 层分类器分类。 | When an unlabeled sample comes, the first layer is used to classify this sample. |
24311 | 如果分类结果可信度较高,则分类结束; | If the classification confidence is higher than the hierarchical threshold, the recognition is over. |
24312 | 否则使用下层分类器分类,直至所有分类器遍历完。 | Otherwise, the next layer will repeat this process until all the layers are traversed. |
24313 | 实验部分通过对采集的动作数据进行仿真,验证了该文方法的有效性。 | The experiment collects activity data, and simulates the activity recognition. |
24314 | 结果表明,与单层分类器相比,该方法可以将动作识别率由 85.2%提高至 89.2%。 | The simulation show that compared with the current methods, this method may improve the recognition rate from 85.2% to 89.2%. |