ID 原文 译文
2463 本文提出了一种基于加权 Schatten p 范数最小化(Weighted Schatten p-Norm Minimization,WSNM)的磁共振图像重构算法,该方法利用磁共振图像的非局部自相似性,并结合 Schatten p 范数和不同秩元素重要性的加权因子,实现磁共振图像重构过程的低秩约束。 In this paper, the weighted Schatten p-norm minimization (WSNM )method is proposed to implement magnetic resonance imaging (MRI)reconstruction. The nonlocal self-similarity of magnetic resonance images, Schatten p-norm and the weighting factors of the importance of different rank elements are integrated together as the low rank constraint to regularize the MRI reconstruction.
2464 此外,采用交替方向乘子算法(Alternating Direction Method of Multipliers,ADMM)来求解基于 WSNM 磁共振图像重构的非凸最小化问题。 In addition, the Alternating Direction Method of Multipliers (ADMM )algorithm isused to solve the non-convex minimization problem of MRI reconstruction based WSNM.
2465 实验结果表明,相比于最近的磁共振重构算法,基于WSNM 的磁共振图像重构方法具有更好的重建效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity,SSIM)。 Compared with other state-of-the-art methods in numerical experiments, the proposed method achieves a higher reconstruction quality with higher peak signal to noise ratio (PSNR)and better structural similarity (SSIM)index.
2466 近年来,基于深度学习的场景文字检测技术取得重要进展。 In recent years, deep learning based scene text detection have achieved significant progress.
2467 本文综述了该技术在 2014 2018 年间的最新工作,将其分为传统区域建议方法、文字建议网络方法、基于分割的方法以及文字建议网络与分割的混合方法,并对各类方法的优劣进行分析。 The paper re-views state-of-the-art methods in the field from 2014-2018. We categorize existing methods into traditional Region Proposalbased method, Text Proposal Network method, segmentation based method and hybrid method based on Text Proposal Net-work and segmentation with detailed analysis of pros and cons for the four methods.
2468 本文还展望了未来发展趋势,指出未来研究热点。 Finally, we point out research trends andfocuses in this field.
2469 视频中的人体动作识别是计算机视觉领域内一个充满挑战的课题。 Human action recognition in videos is a challenging topic in the field of computer vision.
2470 不论是在视频信息检索、日常生活安全、公共视频监控,还是人机交互、科学认知等领域都有广泛的应用。 It is widely notonly used in video information retrieval, daily life security, public video surveillance, but also human-computer interaction, scientific cognition and other fields.
2471 本文首先简单介绍了动作识别的研究背景、意义及其难点, First, the research background, research significance and difficulties of action recognition are briefly introduced,
2472 接着从模型输入信号的类型和数量、是否结合了传统特征提取方法、模型预训练三个维度详细综述了基于深度学习的动作识别方法, and then the deep learning model based action recognition methods are comprehensively reviewed from three different aspects:the types and numbers of input signals, the combination with traditional feature extraction meth-ods, and the pre-trained datasets.