ID 原文 译文
2053 关于面部表情识别的应用也正在渗透至各个领域,如安全驾驶、商品销售、临床医学等等。 Till now, facial expression recognition has been successfully applied to va-rious fields such as safe driving, merchandise sales, clinical medicine, and so on.
2054 本文对面部表情识别相关技术进行研究, This thesis explores key techniques relatedto facial expression recognition.
2055 主要工作及贡献如下: The main work and contributions are as follows.
2056 研究非约束条件下人脸动态表情识别,提出了一种基于多视觉描述子及音频特征融合策略的动态表情识别算法。借助多视觉描述子的空时局部特征描述实现动态表情特征的提取; A dynamic facial expression recognition al-gorithm based on multi-visual descriptors and audio features is proposed under unrestricted conditions, in which dynamic fa-cial feature extraction was conducted based on local spatial-temporal feature representation via multi-visual descriptors.
2057 而视频、音频特征的融合策略改善了表情识别性能。 Fur-thermore, the combination of video and audio features improves the recognition performance.
2058 基于协方差矩阵及时间轴分段的动态规整,有效地解决了具有不同时长的动态表情序列的样本描述。 Dynamic time warping basedon timeline segmentation and covariance matrix proves to be effective in analyzing dynamic expression sequences of differenttime duration.
2059 为进一步改善表情识别模型的泛化性能,本文引入了基于多个体识别模型加权投票的集成识别模型。 To improve the generalization performance of facial expression recognition model, an integrated decision-mak-ing strategy based on weight voting by multiple individual recognition models is introduced.
2060 针对投票过程中的权值学习,提出了基于随机重采样的投票权重学习以及基于个体分类模型相对优势的投票权重学习方法。 In order to effectively learning the weight for each individual recognition model, the method of voting weight learning by random re-sampling and the meth-od of voting learning based on comparative advantages of individual recognition model are proposed.
2061 集成决策进一步改善了表情识别性能。 Finally the above en-semble model is applied and the recognition performance is further improved.
2062 基于 AFEW5.0 的动态表情库实验验证了算法的有效性。 Experiments on AFEW5. 0 dataset validate theperformance of the proposed dynamic facial expression algorithm.