ID 原文 译文
11434 在粒子滤波算法框架下,提出一种改进的地图辅助人员定位方法。 In the framework of particle filter algorithm, an improved map support personnel positioning method.
11435 该方法通过引入粒子的方向加权,充分利用地图信息; The method by introducing particles in the direction of the weighted, make full use of map information;
11436 克服了传统方法中由地图信息错误导致定位失败的缺点,提高了定位算法的稳健性。 Overcome the traditional method of positioning the shortcoming of failure by the map information error, improve the localization algorithm robustness.
11437 通过传感器的实测数据对算法进行验证,新方法随时间变化可保持1m的定位精度,相对于传统方法有较大提高。 Through the measured data of sensor to verify this algorithm, the new method changes over time can keep the positioning accuracy of 1 m, compared with the traditional method is improved greatly.
11438 为降低测试性验证试验费用,提出基于遗传算法的故障样本优化选取方法。 To reduce the cost of testability verification experiment, put forward the failure sample selection optimization method based on genetic algorithm.
11439 方法通过故障—测试关联分析和故障—故障等价分析,确定初始故障样本集中各元素对应的等价集,并对初始故障样本集进行扩展。 ‭Methods by fault - test correlation analysis and fault - equivalent analysis, to determine the initial failure sample concentration corresponding to each element equivalent set, and the initial fault samples set to extend.
11440 在此基础上,建立了故障样本选取优化求解模型。 On this basis, the fault sample selection optimization solution model is established.
11441 在不降低样本注入数量和测试特性的条件下,以试验费用最小为优化目标,给出了基于改进遗传算法的样本优化选取方法。 ‭In not reduce the number of sample injection and test conditions, the characteristic of the minimum test cost as the optimization goal, gives a sample selection optimization method based on improved genetic algorithm.
11442 算例应用结果表明,该方法设计的故障样本选取方法能有效降低测试性验证试验费用。 ‭The example application results show that the method of fault sample selection methods can effectively reduce the cost of testability verification experiment.
11443 为了保证无线传感器网络(wireless sensor network,WSNs)内部节点入侵检测中具有较高的检测率和较低的误检率,提出了一种基于节点信任值的层簇式WSNs入侵检测方案。 In order to ensure that the wireless sensor network (wireless sensor network, WSNs) internal nodes in the intrusion detection has high detection rate and lower false detection rate, this paper proposes a layer of cluster based on node trust value type WSNs intrusion detection scheme.