ID 原文 译文
11074 提出了一种结合约束二次逼近优化(bound optimization by quadratic approximation,BOBYQA)搜索算法的理想点法对非支配解进行局部优化的混合多目标粒子群方法(local search with multiobjective particle swarm optimization,LSMOPSO),以提高多目标粒子群算法的收敛性能和非支配解集的精度与多样性。 Proposed a constrained quadratic approximation optimization (bound optimization by quadratic approximation, BOBYQA) searching algorithm of ideal point method to non dominated solution for local hybrid multi-objective particle swarm optimization method (local search with multiobjective particle swarm optimization, LSMOPSO) and multi-objective particle swarm optimization (pso) algorithm to improve the convergence performance and the control accuracy and diversity of the solution set.
11075 LSMOPSO算法使用拥挤距离选择领导粒子组成领导粒子集,并对其进行理想点局部搜索; ‭LSMOPSO choice algorithm using crowded distance particles leadership particle set, and carries on the ideal point local search;
11076 分析比较了全局理想点和局部理想点对算法性能的影响,提出基于局部理想点的局部搜索策略; Comparing global ideal point and local ideal point effect the performance of the algorithm, is put forward based on local ideal point of local search strategy;
11077 在粒子的设计空间的多个维度上引入均匀变异操作,降低算法陷入局部最优的可能。 In particle on the multiple dimensions of design space, introduce the uniform mutation, reducing algorithm falls into local optimum.
11078 基本测试函数的求解结果表明,算法的收敛速度很快,而且搜索到的非支配解集的精度高、多样性好。 Basic test function solving results show that the algorithm convergence speed, and search for the high precision and diversity of non dominated solution set is good.
11079 针对样本协方差矩阵受干扰目标污染时机载多输入多输出(multiple-input multiple-output,MIMO)雷达空时自适应处理(space-time adaptive processing,STAP)目标检测性能下降的不足,提出一种知识辅助(knowledge-aided,KA)的广义内积非均匀样本检测方法。 Pollution for a sample covariance matrix interference target time to load multiple input multiple output (multiple - input multiple output, MIMO) when LeiDaKong adaptive processing (space - time the adaptive processing, STAP) target detection performance degradation, puts forward a kind of auxiliary knowledge (knowledge - aided, KA) generalized inner product of the non-uniform samples test methods.
11080 首先利用扁长椭球波函数估计的杂波子空间知识,离线构造杂波协方差矩阵; First long oblate ellipsoid wave function is used to estimate the clutter subspace of knowledge, offline structure clutter covariance matrix.
11081 然后与广义内积非均匀检测器(generalized inner product non-homogeneity detector,GIP NHD)结合,实现对训练样本的有效选择,使目标检测不受训练样本中干扰目标的影响。 And then with generalized inner product non-uniform detector (generalized inner product non - homogeneity detector, GIP NHD), implement effective selection of training samples, the target detection is not affected by interference target in the training sample.
11082 仿真结果表明,相对于常规GIP方法,KA-GIP方法能够对存在干扰目标的样本进行更加有效地剔除,并且机载MIMO雷达STAP的目标检测性能得到显著提升,因此更有利于实际工程应用。 The simulation results show that relative to the conventional method of GIP KA - GIP method can exist for interference target samples more effectively, and the airborne MIMO radar target detection performance of STAP received a significant boost, thus more conducive to actual engineering application.
11083 推导了天基高能激光清理作用地球静止轨道(geostationary earth orbit,GEO)碎片的最佳角度解析关系; Space-based high-energy laser cleaning effect is deduced from the geostationary orbit (geostationary earth orbit, GEO) fragments of best Angle analytical relations.