ID |
原文 |
译文 |
52757 |
视触觉增强现实(VHAR)技术可在虚实结合的场景中实现力触觉交互。 |
Force-haptic interaction, through visuo-haptic augmented reality(VHAR) technology, could be achieved in scenes combining virtual and real. |
52758 |
本文基于Geomagic Touch触觉设备提出了一种新的视触觉增强现实交互算法, |
This paper, based on the Geomagic Touch haptic device, proposes a new visual and tactile augmented reality interaction algorithm. |
52759 |
以快速特征点提取和描述算法(ORB)与角点光流跟踪算法(KLT)算法搭建基于自然特征的增强现实环境,并以此为框架融入触觉反馈接口,实现视触觉协同反馈的交互环境。 |
The ORB and KLT algorithms are used to build an augmented reality environment based on natural features, which is used as a framework to integrate the haptic feedback interface to realize an interactive environment of visuo-haptic collaborative feedback. |
52760 |
该算法首先对真实场景中的触控笔进行虚拟注册,然后基于触觉设备的前向运动模型,实现虚拟触控笔与真实触控笔的6-DOF协同运动; |
The algorithm firstly carries out virtual registration for the stylus in the real scene, and then conducts the 6-DOF coordinated movement between the real and virtual styluses based on the forward motion model of the haptic device; |
52761 |
最后通过虚拟触控笔实现对虚拟物体的操控,实现了更加真实、自然的视触觉人机交互。 |
finally, more real and natural visuo-haptic human-computer interaction is achieved in the manipulation of virtual objects by the virtual stylus. |
52762 |
实验结果表明,此方法具有良好的实时性、可行性和准确性。 |
Experimental results show that this method is able to achieve good real-time performance, feasibility and accuracy. |
52763 |
在实际勘探中,由于环境、设备或人为因素的影响,采集的地震数据中有很多丢失的数据,严重影响了数据的解释工作。 |
In actual exploration, due to the influence of environment, equipment or human factors, there are a lot of missing data in the seismic data collected, which seriously affects the data interpretation work. |
52764 |
针对这一问题,根据地震数据的时空相关性,提出了一种基于时空约束压缩感知的地震数据重建方法。 |
Aiming at this problem, according to the space-time correlation of seismic data, a method of seismic data reconstruction based on space-time constrained compressed sensing is proposed. |
52765 |
该方法使用内核奇异值分解(KSVD)字典学习算法训练超完备字典作为稀疏变换基, |
In this method, an over-complete dictionary as a sparse transform basis is trained using kernel singular value decomposition(K-SVD) dictionary learning algorithm. |
52766 |
进而利用改进的稀疏自适应匹配追踪算法(SAMP)完成重建。 |
The reconstruction is accomplished using an improved sparsity of adaptive matching pursuit(SAMP). |