ID |
原文 |
译文 |
50507 |
利用Domain桥将两个数据空间相联,通过主题映射实现不同数据空间的信息交互,以提高仿真架构的性能和扩展性。 |
Using Domain bridge connected the two data space, through topic map for different data space information interaction, to improve the performance of the simulation architecture and extensibility. |
50508 |
最后,通过两个原型试验发现了映射模型与系统性能的关系,证实了Domain桥的功能和性能。 |
Finally, through the two-prototype test found mapping model and the relationship between the performance of the system, confirmed the Domain bridge function and performance. |
50509 |
在多子载波、频率选择性衰落、双向中继转发信道中提出多中继协作的基于AF-CDC-OFDM的差分网络编码方法。 |
In fertility carrier, frequency selective fading, put forward in a two-way relaying channel relay coordination based on AF - CDC - OFDM differential network coding method. |
50510 |
通过多个协作中继的分布式循环延时编码及功率放大处理,两路终端发送的差分编码分组可获得完全的协作分集和频率分集增益。 |
Distributed collaboration through multiple relay loop delay coding and power amplification, differential coding group of terminal sends completely cooperative diversity and frequency diversity gain can be obtained. |
50511 |
两路终端在检测对方的发送信号之前需要消除自干扰信号,为此,提出基于统计相关的自干扰分量估计方法。 |
Two-way terminal before testing each other's signal to eliminate the interference signal, therefore, put forward since the interference estimation method based on statistical correlation. |
50512 |
仿真结果表明,提出的差分网络编码能够获得完全的分集增益性能,对应的自干扰分量相关统计估计算法在慢衰落信道中与干扰分量完全消除的检测性能相比,仅有0. 5dB的信噪比损耗。 |
The simulation results show that the proposed differential network coding can achieve full diversity gain performance, corresponding to the interference component related statistical estimation algorithm in the slow fading channel compared with the detection performance of completely eliminate the interference components, only 0. 5 dB SNR loss. |
50513 |
针对卫星和浮空器协同对地侦察任务规划问题,提出了一种分阶段任务规划方法,将卫星与浮空器协同任务规划分为任务聚类、任务组分配和任务排程3个相继的阶段。 |
For satellite and aerostats synergy of reconnaissance mission planning problem, put forward a method of phased mission planning, coordination with aerostat the satellite mission planning is divided into task clustering, task allocation and task scheduling three successive stages. |
50514 |
使用层次聚类算法进行任务聚类,通过聚类形成多个任务组; |
Using hierarchical clustering algorithm for clustering task, through clustering to form multiple task group; |
50515 |
给出了任务组分配的规划模型,将任务组与平台资源进行匹配; |
Task group distribution planning model is given, and the task group and platform resource matching; |
50516 |
建立了任务排程的混合整数规划模型,并使用粒子群算法进行求解,将任务最终分配到相应的平台上。 |
Task scheduling of mixed integer programming model is established, and the use of particle swarm algorithm to solve, the task assigned to the corresponding platform finally. |