ID |
原文 |
译文 |
913 |
为此本文提出了一种针对无线通信拥塞和故障的容错路由算法, |
Therefore, this paper proposes a fault-tolerant routing algorithm forwireless communication congestion and faults. |
914 |
首先设计了无线通信拥塞和故障感知模型,该模型能够感知无线节点通信对的拥塞和故障信息,并对其编码发送给子网中的路由器; |
Firstly, a wireless communication congestion and fault aware model is de-signed. The model can get the congestion and fault information of the wireless node communication pair, encode it and sendit to the routers in subnet. |
915 |
然后子网中的路由器根据接收到的无线节点通信对状态信息,判断数据包是否使用无线传输。 |
Then the router in the subnet determines whether the data packet uses wireless transmission ac-cording to the received wireless node communication pair status information. |
916 |
实验表明,本文方案相较于对比对象能够在较小的额外面积、功耗开销下,保证较低的网络延迟和较高的网络吞吐率,并对无线节点通信对的永久性故障具有良好的容错能力。 |
Experiments show that the proposed scheme can guarantee lower network delay and higher network throughput under smaller additional area overhead and power consumptionthan the comparison schemes, and exhibit good performance to tolerant permanent faults of wireless node communicationpairs. |
917 |
提出一种基于多流架构与长短时记忆网络的上下文建模框架,旨在克服组群行为识别的两个难点, |
This paper proposes a context modeling framework based on multi-stream architecture and LSTM, which aimsto overcome two difficulties for group behavior recognition. |
918 |
其一对复杂场景中多视觉线索进行信息融合; |
One is to fuse information from multiple visual cues in complexscenes, |
919 |
其二对情景人物进行建模,以获得长视频上下文关系。 |
the other is to model situational characters to get the long-term temporal context in the video. |
920 |
并且,对基于全局信息和基于局部信息的识别结果进行决策融合,判定最终组群行为属性。 |
In addition, decision fusion isperformed on the behavior recognition results based on global information and local information to determine the final group be-havior attributes. |
921 |
该算法在 CAD1 和 CAD2 上分别取得 93.2% 和95.7% 平均识别率。 |
The algorithm achieved 93. 2% and 95. 7% average recognition rates on CAD1 and CAD2 respectively. |
922 |
针对多目标跟踪中的传感器控制问题,本文基于有限集统计(FISST)理论,利用高斯混合多伯努利滤波器研究并提出相应的传感器控制策略。 |
In consideration of the sensor control for multi-target tracking, this paper proposes the corresponding sensor control strategy using Gaussian mixture multi-Bernoulli filter based on the FInite Set Statistics (FISST)theory. |