ID 原文 译文
43256 基于 IHP 130 nm SiGe BiCMOS 工艺,采用倍频器和驱动放大器 ( DA) 结构实现了由 K 波段提升至 G 波段的十二倍频链信号源设计。 The design of ×12 frequency multiplier chain (FMC) signalsource from K-band to G-band was realized by using a frequency-multiplier and a driver amplifier (DA)structure based on the IHP 130 nm SiGe BiCMOS process.
43257 对于偶次倍频单元,为了获得较好的谐波抑制尤其是奇次谐波抑制,该设计采用了经典的 push-push 结构; For the even frequency doubling unit, theclassic push-push structure was adopted to obtain a better harmonic suppression, especially the odd harmonic suppression.
43258 采用前后变压器耦合的方法实现了奇次倍频。 And the odd frequency doubling was realized by using the method of front and reartransformer coupling.
43259 提出了一种宽带有源 Marchand 巴伦结构,其工作带宽大于 190 GHz,覆盖了大部分微波和太赫兹频段。 The wideband active Marchand balun structure was proposed.The workingbandwidth is more than 190 GHz, covering most of microwave and terahertz bands.
43260 电路后仿真结果表明,当输入信号频率为 18. 3 GHz、功率为 0 dBm 时,倍频器的输出功率为- 17. 26 dBm,同时输出信号的谐波抑制比均大于 15 dBc,3 dB 带宽为 213 ~246 GHz ( 相对带宽 14. 4%) The post simulationresults show that when the input signal frequency is 18.3 GHz and the power is 0 dBm, the output powerof the frequency multiplier is 17.26 dBm, while the harmonic rejection ratio of the output signal isgreater than 15 dBc, and the 3 dB bandwidth is 213-246 GHz (relative bandwidth of 14.4%) .
43261 采用 1. 2 V 2. 1 V 双电源供电,0. 8 V 0. 9 V 电压偏置,该倍频链直流功耗大小为59 mW,芯片面积为 1. 9 mm×0. 8 mm。 The DCpower consumption of the frequency multiplier chain is 59 mW under 1.2 V/2.1 V dual-supply voltagesand 0.8 /0.9 V biase voltages, the chip area is 1.9 mm×0.8 mm.
43262 采用基于硝酸钾溶液的电化学刻蚀工艺,通过横向刻蚀牺牲层的方法,在金属有机化学气相沉积法生长的氮化镓 ( GaN) 外延层上实现了纳米孔与纳米薄膜两种结构。 Nano-porous and nanomembranes structures were realized on the gallium nitride (GaN)epitaxial layer grown by metal organic chemical vapor deposition by using electrochemical etching process of potassium nitrate solution and lateral etching of the sacrificial layer.
43263 通过扫描电子显微镜 ( SEM) GaN 的表面和截面进行了对比表征。 The surface and cross section ofGaN were characterized by scanning electron microscopy (SEM) .
43264 结果表明,由于在刻蚀过程中氧气的产生,相比于稳定性很好的 SiO2,易于氧化剥落的光刻胶在大电压刻蚀下存在着明显的缺陷; The results show that due to the generation of oxygen during the etching process, the photoresist which is easy to be oxidized and peeled off hasobvious defects under the large voltage etching compared with SiO2 with good stability.
43265 在刻蚀电压为 12~22 V 时牺牲层可以被刻蚀出纳米孔结构,且随着电压的增加刻蚀孔也会增大; When the etchingvoltage is 12 22 V, the sacrifical layer can be etched into the nano-pore structure, and the size ofetching holes increase with the increase of voltage.