ID |
原文 |
译文 |
26135 |
实验表明,VNP-SVNME 算法的资源映射开销相对ILP 仅平均高 15% ,且优于现有的启发式可生存算法。 |
Experiments show that the resource mapping cost of the VNP-SVNME algorithm is only 15% higher on average than the optimal solution, but it is better than the state-of-the-art heuristic. |
26136 |
此外,VNP-SVNME 算法的映射时间相对 ILP 大大降低,可以满足在线虚拟网络映射的需求。 |
In addition, the time complexity is greatly reduced compared to ILP, which can meet the requirements of on-line virtual network mapping. |
26137 |
在一个时间窗口网络中寻找前 k 条最短路径是一项具有挑战性的任务。 |
It is a challenging task to find the k shortest paths in a time-window network. |
26138 |
在时间窗口网络中,一个节点可能只有在某些特定的时间窗口内才能通行。 |
A node may only be accessible within some specific time windows. |
26139 |
现有的研究大都假设运动体可以立即通过可通行节点,或者在暂不可通行节点处等待直到未来时间窗口的开始时刻才通过。 |
In the existing researches, an assume is made that a traveller can pass through an accessible node immediately or wait until the next accessible time window. |
26140 |
本文针对一个更一般的时间窗口情况,其中运动体一旦到达节点,可以选择在节点的时间窗口中的任何离散时刻通过该节点。 |
This paper targets a more general case where a traveller, once arrived at a node, may choose to pass through the node at any discrete times in the time windows of the node. |
26141 |
本文将这样的时间窗口网络称为拓展时间窗口网络,其解空间大小和复杂程度都显著增加。 |
In such a generalized time-window network, the complexity increases significantly, as the size of solution space soars up exponentially. |
26142 |
通过模拟水面上的自然涟漪扩散现象,本文提出了一种有效的涟漪扩散算法,用于求解拓展时间窗口网络中的前 k 条最短路径。 |
By imitating the natural ripple-spreading phenomenon on a liquid surface, an effective ripple-spreading algorithm (RSA) is proposed for the k shortest paths problem in a generalized time-window network (k-SPPGTW). |
26143 |
除了一对一问题之外,涟漪扩散算法(ripple spreading algorithm,RSA)还扩展到一对多问题.在一对多问题中,需要找到从给定起点到网络中的每个其他节点的所有前 k 条最短路径。 |
Besides one-to-one k-SPPGTW, the RSA is also extended to one-to-all k-SPPGTW, where all the k shortest paths from a given source to every other node in the network need to be found. |
26144 |
新方法具有最优性的理论保证,其计算复杂度仅为 O(k × NATU× NL),其中 NL是网络中链接的数量,NATU是涟漪通过链接平均所需的仿真时间单位数。 |
The new method has a theoretically guaranteed optimality. The computational complexity of the RSA is O(k × NATU× NL), where NLis the number of links in the network, and NATUis the average simulated time units for a ripple to travel through a link. |