ID |
原文 |
译文 |
24855 |
对于无约束 L2⁃L∞范数的子问题 II,将L∞范数做近似光滑化处理,并通过梯度下降法求解。 |
Regarding subproblem-II, which has L2-L∞terms without constraints, we smoothen the L∞term approximately, and employ the gradient descent method to solve it. |
24856 |
交替求解两个子问题至收敛,以求解发射信号。 |
The transmitted signal is obtained when the solutions of two subproblems are convergent. |
24857 |
仿真实验表明,本文模型在副瓣区域能量抑制上较基于L1范数的区域聚焦照射模型具有更优性能,且本文算法实用性更强。 |
Numerical experiments reveal that the proposed model has better performance on alleviating the energy in sidelobe regions, and the adopted algorithm is more practical than the method based on L1-norm. |
24858 |
水下机器人的自主快速精确定位是完成海洋资源勘探、目标探测定位与追踪等水下作业任务的前提。 |
Rapid localization of autonomous underwater vehicles (AUVs) plays an important role in target pursuit tasks. |
24859 |
论文研究基于相对测量的水下机器人主动定位方法,解决存在大的初始定位偏差情况下多水下机器人的快速定位问题。 |
We study active localization method for AUVs using noisy relative measurement, which achieves the precise position estimate of AUVs as quickly as possible under inaccurate initial estimates. |
24860 |
论文提出包括测量、估计和控制三个模块的多水下机器人快速主动定位框架,降低相对测量误差、初始偏差带来的定位不确定性,同时使多机器人定位具有良好的可扩展性 。 |
A framework for active localization of AUVs with excellent scalability is proposed, which is composed of measurement module, control module and estimation module. |
24861 |
提出的主动接近信标策略优势在于:被定位机器人与信标的相对几何位置收敛过程中,机器人的定位估计快速指数收敛。 |
In control module we design the motion strategy for AUV, which makes simultaneous convergence of position estimate and the relative geometric location between AUV and beacon. |
24862 |
利用受噪声干扰的相对测距信息,论文采用强化学习方法实现提出的主动接近信标机动策略。 |
Using noisy relative measurement, a method based on reinforcement learning is adopted to achieve the motion strategy. |
24863 |
开展的数值仿真实验结果表明:相对于基于圆形轨迹、梳状形轨迹机动策略的定位方法,论文所提方法使得水下机器人定位过程具有更好的快速性和鲁棒性。 |
The numerical simulation results show that the proposed framework and motion strategy has better rapidity and robustness than the traditional localization method. |
24864 |
目前基于视觉的动态头势识别算法泛化能力弱、识别率低,头戴式传感器的方法经济性、便携性差。 |
Present vision based on dynamic head gesture recognition algorithms usually have disadvantages in generalization and recognition rate, and head-mounted sensors are expensive and inconvenient. |