ID |
原文 |
译文 |
24305 |
为了提高手机位置不固定时的动作识别率,该文提出一种基于层次分类的动作识别方法。 |
To improve the recognition rate when the phone's displacement is unfixed, a hierarchical classification-based activity recognition method is proposed. |
24306 |
该方法将动作识别分为多层,每一层包含一个分类器。 |
The activity recognition process is divided into multiple layers in this method, and each layer contains a classifier. |
24307 |
在训练某一层分类器时,首先根据本层训练样本集进行特征选择并训练分类器。 |
For training each layer's classifier, it runs the feature selection algorithm first, and the classifier is trained based on the selected features. |
24308 |
然后使用训练得到的分类器对训练样本分类,并计算分类结果的可信度。 |
Then, the trained classifier is used to classify the training set, and each sample's classification confidence is calculated. |
24309 |
最后通过对低可信度的样本进行剪枝得到下层分类器的训练样本。 |
Finally, samples whose confidence is lower than the hierarchical threshold are selected as the next layer's training set. |
24310 |
对未知类别的样本分类时,首先使用第 1 层分类器分类。 |
When an unlabeled sample comes, the first layer is used to classify this sample. |
24311 |
如果分类结果可信度较高,则分类结束; |
If the classification confidence is higher than the hierarchical threshold, the recognition is over. |
24312 |
否则使用下层分类器分类,直至所有分类器遍历完。 |
Otherwise, the next layer will repeat this process until all the layers are traversed. |
24313 |
实验部分通过对采集的动作数据进行仿真,验证了该文方法的有效性。 |
The experiment collects activity data, and simulates the activity recognition. |
24314 |
结果表明,与单层分类器相比,该方法可以将动作识别率由 85.2%提高至 89.2%。 |
The simulation show that compared with the current methods, this method may improve the recognition rate from 85.2% to 89.2%. |