ID 原文 译文
21015 物联网终端受限的计算能力与硬件配置以及配备大规模天线阵列的窃听者给物理层安全技术带来了新的挑战。 The limited computing capability and hardware configuration of IoT terminals andeavesdroppers equipped with massive Multiple-Input Multiple-Output (MIMO) bring new challenges to physicallayer security technology.
21016 针对该问题,该文提出一种可对抗大规模天线阵列窃听者的轻量级噪声注入策略。 To solve this problem, a lightweight noise injection scheme is proposed that cancombat massive MIMO eavesdropper.
21017 首先,对所提出的噪声注入策略进行介绍,并分析了该策略的安全性; Firstly, the proposed noise injection scheme is introduced, along with thecorresponding secrecy analysis.
21018 然后,基于该策略得到了系统吞吐量的闭式表达式,并对时隙分配系数和功率分配系数进行优化设计。 Then, the close-formed expression of the throughput is derived based on the proposed scheme. Furthermore, the slot allocation coefficient and power allocation coefficient are optimized.
21019 理论和仿真结果表明,通过对物联网系统参数进行设计,所提出的噪声注入策略能够实现私密信息的安全传输。 The analytical and simulation results show that the proposed noise injection scheme can achieve the security ofprivate information transmission by designing of the IoT system parameters.
21020 目前,微波辐射计均面临严重的射频干扰(RFI)问题,尤其在低频段。 At present, microwave radiometers suffer from serious Radio Frequency Interference (RFI), especiallyin low frequency.
21021 针对一种用于获取海洋盐度和土壤湿度的L波段相控阵微波辐射计,该文提出一种射频干扰检测算法。 In this paper, a radio frequency detection algorithm is proposed for L-band phased arrayradiometer, which is used to measure the sea surface salinity and soil moisture.
21022 首先,简单介绍了该L波段相控阵微波辐射计系统; First, the L-band phased arrayradiometer is introduced in briefly.
21023 随后,详细介绍该射频干扰算法,其主要包括RFI初标识、RFI滑动窗口1次标识、RFI滑动窗口2次标识和RFI扩展标识等4个步骤; Secondly, the radio frequency detection algorithm is introduced in details,which consists of the raw RFI flag, the RFI first moving–averaged window flag, the RFI secondmoving–averaged window flag and the expanded RFI flag.
21024 最后,采用该算法对L波段相控阵微波辐射计的实验数据进行处理。 Finally, the experimental data obtained by the L-band phased array radiometer is processed with the proposed RFI detection algorithm.