ID |
原文 |
译文 |
20355 |
八阵图算法(ESF)是一种具有广义Feistel结构的轻量级分组密码算法,可用在物联网环境下保护射频识别(RFID)标签等资源受限的环境中,目前对该算法的安全性研究主要为不可能差分分析。 |
Eight-Sided Fortress (ESF) is a lightweight block cipher with a generalized Feistel structure, whichcan be used in resource-constrained environments such as protecting Radio Frequency IDentification (RFID)tags in the internet of things. At present, the research on the security of ESF mainly adopts the impossibledifferential cryptanalysis. |
20356 |
该文通过深入研究S盒的特点并结合ESF密钥扩展算法的性质,研究了ESF抵抗相关密钥不可能差分攻击的能力。 |
The ability of ESF to resist the related-key impossible differential cryptanalysis isstudied based on the characteristics of its S-boxes and key schedule. |
20357 |
通过构造11轮相关密钥不可能差分区分器,在此基础上前后各扩展2轮,成功攻击15轮ESF算法。 |
By constructing an 11-round related-keyimpossible differential distinguisher, an attack on 15-round ESF is proposed by adding 2-round at the top and2-round at the bottom. |
20358 |
该攻击的时间复杂度为240.5次15轮加密,数据复杂度为261.5个选择明文,恢复密钥比特数为40 bit。 |
This attack has a time complexity of 240.5 15-round encryptions and a data complexityof 261.5 chosen plaintexts with 40 recovered key-bit. |
20359 |
与现有结果相比,攻击轮数提高的情况下,时间复杂度降低,数据复杂度也较为理想。 |
Compared with published results, the time complexity isdecreased and the data complexity is ideal with the number of attack rounds increased. |
20360 |
现有的多目标进化聚类算法应用于图像分割时,往往是在图像像素层面上进行聚类,运行时间过长,而且忽略了图像区域信息使得图像分割效果不太理想。 |
When multi-objective evolutionary clustering algorithms are applied to image segmentation, theimage pixels are always utilized to be clustered. It results in a long running time. In addition, due to notconsidering the image region information, the image segmentation effect is not ideal. |
20361 |
为了提高多目标进化聚类算法的分割效果和时间效率,该文将图像区域信息与部分监督信息引入多目标进化聚类,提出图像区域信息驱动的多目标进化半监督模糊聚类图像分割算法。 |
In order to improve thesegmentation effect and time efficiency of the multi-objective evolutionary clustering algorithm, the imageregion information and some supervised information are introduced into multi-objective evolutionary clustering.Then a multi-objective evolutionary semi-supervised fuzzy clustering image segmentation algorithm driven byimage region information is presented. |
20362 |
该算法首先利用超像素策略获得图像的区域信息,然后结合部分监督信息,设计融合区域信息和监督信息的适应度函数,接着通过多目标进化策略对多个适应度函数进行优化得到最优解集。 |
First, the region information of the image is obtained through the super-pixel strategy. Second, two novel fitness functions are designed by introducing the supervised information andregion information. Third, the multi-objective evolutionary strategy is used to optimize these two fitnessfunctions to obtain an optimal solution set. |
20363 |
最后构造融合区域信息与监督信息的最优解评价指标,实现从最优解集中选取一个最优解。 |
Finally, an optimal solution evaluation index with region information and supervision information is constructed and utilized to select an optimal solution from the optimal solution set. |
20364 |
实验结果表明:与已有多目标进化聚类算法相比,该算法不但分割效果有所提升,而且运行效率得以提高。 |
Experimental results show the proposed algorithm outperforms comparison methods insegmentation performance and running efficiency. |