ID |
原文 |
译文 |
18345 |
该文提出了一种基于核稀疏编码的自动检测方法,可以仅根据较短RR间期数据识别PAF发作。 |
An automatic detection method is proposed based on kernel sparse coding, which can identify PAF attacks based only on short RR interval data. |
18346 |
该方法采用特殊几何结构来分析数据高维特性,通过计算协方差矩阵作为特征描述子,找到蕴含在数据中的黎曼流形结构; |
A specialgeometric structure is presented to analyze the high-dimensional characteristics of the data, and the covariancematrix is calculated as a feature descriptor to find the Riemannian manifold structure contained in the data; |
18347 |
然后基于Log-Euclid框架,利用核方法将流形空间映射到高维可再生核希尔伯特空间,以获取更准确的稀疏表示来快速识别PAF。 |
Based on the Log-Euclidean framework, a manifold method is used to map the manifold space to a high-dimensional renewable kernel Hilbert space to obtain a more accurate sparse representation to identify quickly PAF. |
18348 |
经麻省理工学院-贝斯以色列医院房颤数据库验证,获得98.71%的敏感性、98.43%的特异度和98.57%的总准确率。 |
After verification by the Massa-chusetts Institute of Technology-Beth Israel Hospital atrial fibrillation database, the sensitivity is 98.71%, the specificity is 98.43%, and the total accuracy rate is 98.57%. |
18349 |
因此,该研究对检测短暂发作的PAF有实质性的改善,在临床监测和治疗方面显示出良好的潜力。 |
Therefore,this study has a substantial improvement in the detection of transient PAF and shows good potential forclinical monitoring and treatment. |
18350 |
参数估计对雷达的目标检测和识别有着重要的意义。 |
Parameter estimation is very important for radar to detect and recognize targets. |
18351 |
该文提出了一种基于期望最大化(EM)算法的捷变频联合正交频分复用(FA-OFDM)雷达高速多目标参数估计方法。 |
In this paper, a high speed multi-target parameter estimation method for Frequency Agility-Orthogonal Frequency Division Multiplexing(FA-OFDM) radar based on Expectation Maximization(EM) algorithm is proposed. |
18352 |
首先,将窄带正交频分复用(OFDM)信号与传统捷变频雷达相结合,在每个脉冲宽度内同时发射多个载频随机跳变的子载波。 |
Firstly, apromising idea is to combine narrowband Orthogonal Frequency Division Multiplexing (OFDM) signals andfrequency agility, multiple subcarriers that frequency hopping randomly are simultaneously transmitted withineach pulse width. |
18353 |
然后,对单个脉冲内所有子载波的回波进行脉冲压缩和稀疏重构处理,得到1维高分辨距离。 |
Then, all echoes of a single pulse are compressed and sparsely reconstructed to achieve 1-demension high range resolution. |
18354 |
进一步地,将多个目标在不同脉冲时刻的高分辨距离信息构成观测数据,建立混合高斯模型。 |
Subsequently, the high resolution range of multiple targets at each pulse timeare obtained to constitute the observation data, and Gauss mixture model is established. |