ID 原文 译文
17055 在这种情况下,实验结果表明两种非相干检测器能确保全场景恒虚警。 In this case, the experimental results show that the two non-coherent detectors can ensure CFAR in the overall scene.
17056 针对利用单站接收多个外辐射源信号实现目标定位的问题,该文提出一种基于两步加权最小二乘的到达角度(DOA)、时差(TDOA)和频差(FDOA)联合定位代数解算法。 To achieve the target localization using single-observer receiving multiple external illuminators, analgebraic solution based on two-step Weighted Least Squares (2WLS) is proposed to find the target positionand velocity from Direction Of Arrival (DOA), Time Difference Of Arrival (TDOA), and Frequency DifferenceOf Arrival (FDOA) measurements.
17057 首先,在第1步加权最小二乘估计中,通过引入辅助参数,将非线性的角度、时差和频差方程转化为伪线性形式,并利用加权最小二乘得到目标位置和速度的粗估计; In the first WLS step, the DOA, TDOA, and FDOA measurements arepseudo-linearized by introducing additional parameters and a WLS minimization is used to obtain an roughestimate of target position and velocity;
17058 而后在第2步加权最小二乘估计中利用辅助参数和目标位置参数之间的约束关系来构造另外一组线性方程,并再次利用加权最小二乘得到目标位置和速度的精确估计。 Then in the second WLS step, the relationship between the additionalparameters and the target location parameters is utilized to form another set of linear equations, from whichthe final accurate estimate of target position and velocity are obtained by using WLS minimization again.
17059 推导了联合角度、时差和频差定位的克拉美罗界。 TheCramer-Row Lower Bound (CRLB) for DOA-TDOA-FDOA-based target position and velocity estimation arederived.
17060 理论分析和仿真结果表明,算法在观测误差较小时的定位误差可以达到克拉美罗界。 Theoretical accuracy analysis and simulation results indicate that the proposed solution can achievethe CRLB at sufficiently small measurement noise levels.
17061 为了提高3维前视声呐的方位分辨能力,同时避免2维(2D)方位估计(DOA)方法失效,该文提出1维(1D)空间角估计方法、基于Vernier法的垂直角估计方法和基于最小角定理的水平角方位估计方法。 In order to obtain higher resolution and avoid the failure of Two-Dimensional (2D) of Direction-Of-Arrival (DOA) estimation, One-Dimensional (1D) spatial DOA estimation method, vertical DOA estimation viaVernier method and horizontal DOA estimation method via minimum angle theorem are proposed.
17062 首先基于不同子阵构造互协方差矩阵避免2维方位估计模型失效,再利用Khatri-Rao积进行虚拟孔径扩展; First,covariance matrices are constructed based on various subarrays to alleviate the failure of 2D model, and theKhatri-Rao product is adopted to extend the virtual array aperture.
17063 将扩展后的阵列导向矢量和观测向量模型用于2维方位估计。 Second, the extended observation modelsand corresponding array steer vector are exploited for 2D DOA estimation.
17064 与原阵列的导向矢量相比,虚拟阵元数量约增加1倍,阵列的孔径得到有效扩展。 Compared with the steer vector ofthe original array, the number of virtual array elements is doubled, and thus the array aperture is extended.