ID |
原文 |
译文 |
16645 |
首先,融合影像组学特征和通过卷积神经网络提取的高阶特征构造分析CT征象所需的特征集; |
Firstly, features sets are extracted of CT signs by combing the radiomics features with the higher-orderfeatures extracted by convolutional neural network. |
16646 |
接着,在混合特征集的基础上利用进化搜索机制优化集成学习分类器,实现对7种肺结节征象的识别和量化打分; |
Then, the ensemble classifier is optimized by the evolutionarysearch mechanism based on the mixed feature sets, and it is used to realize quantitative scores for 7 CT signs. |
16647 |
最后,将7种CT征象的量化打分输入到一个利用差分进化算法优化产生的多分类器,实现肺结节恶性度的分级计算。 |
Finally, 7 quantitative scores are input to the optimized multi-classifier to achieve the grading of malignant nodules in the lung. |
16648 |
在实验研究中使用LIDC-IDRI数据集中的2000个肺结节样本进行进化集成学习器和恶性度分级器的训练和测试。 |
In the experience, 2000 samples of lung nodules in LIDC-IDRI data set are used to trainand test the proposed method. |
16649 |
实验结果显示对7种CT征象的识别准确率可达0.9642以上,肺结节恶性度分级的准确率为0.8618,精确率为0.8678,召回率为0.8617,F1指标为0.8627。 |
The results show that the recognition accuracy of the 7 CT signs can reach morethan 0.9642, the grading accuracy reaches 0.8618, the precision reaches 0.8678, the recall reaches 0.8617, andthe F1 index reaches 0.8627. |
16650 |
与多个典型算法的比较显示,该文方法不但具有较高的准确率,而且可对相关CT征象进行量化分析,使得对恶性度的分级结果更具可解释性。 |
With respect to typical algorithms, the proposed method not only has highaccuracy, but also can quantitatively analyze the CT signs that make the grade result of malignancy more interpretive. |
16651 |
针对频谱短缺、基站负荷过高、通信系统功耗较大等问题,考虑不完美的信道状态信息,该文提出一种基于非正交多址接入的无线携能(SWIPT)D2D网络鲁棒能效(EE)最大化资源分配算法(SREA)。 |
In order to resolve the problems of spectrum shortage, large power consumption, and excessive loadat base stations, a Simultaneous Wireless Information and Power Transfer (SWIPT)-based Robust EnergyEfficiency (EE) Algorithm (SREA) with imperfect channel state information is proposed to maximize the totalEE in Non-Orthogonal Multiple Access (NOMA) assisted Device-to-Device (D2D) networks. |
16652 |
考虑用户的服务质量约束以及最大发射功率约束,基于随机信道不确定性建立鲁棒能效最大化资源分配模型。 |
Considering theusers' Quality of Service (QoS) constraints and maximum transmit power constraints, a robust EEmaximization-based resource allocation model is established based on random channel uncertainties. |
16653 |
利用Dinkelbach和变量替换方法,将原NP-hard问题转换为确定性的凸优化问题,通过拉格朗日对偶理论求得解析解。 |
Moreover,the original NP-hard problem is transformed into a deterministic convex optimization problem by usingDinkelbach’s method and the variable substitution method. And the analytical solutions are obtained through Lagrange dual theory. |
16654 |
仿真结果表明,所提算法在保证蜂窝用户通信质量的同时,能够有效提高D2D用户的能效性和鲁棒性能。 |
Simulation results demonstrated that the proposed algorithm can effectively improve thesystem EE and the robustness of D2D users while ensuring the communication quality of cellular users. |