ID |
原文 |
译文 |
1913 |
根据目标函数的性质得到了计算简便的近似均值矩阵。 |
The approximate mean matrix with low computational complexity is obtained ac-cording to the properties of the objective function. |
1914 |
利用不同方法得到的均值矩阵,提出了几种新的基于谱范数的矩阵 CFAR 检测器。 |
In addition, we propose several matrix CFAR detectors based on different mean matrix estimation methods. |
1915 |
通过检测势分析和仿真实验验证了其检测性能优于现有的其他矩阵 CFAR 检测器,复杂度分析也表明了其计算复杂度低于现有的其他矩阵 CFAR检测器,为海杂波背景下的雷达目标检测提供了新的有效技术手段。 |
Finally, the detection power analysis and simulation results show that the detection perform-ance of the proposed methods with lower computational complexity are superior to other existing matrix CFAR detectors. It provides a new effective technique for radar target detection under sea clutter background. |
1916 |
协同过滤作为推荐系统核心技术,面临严重的评分数据稀疏性问题。 |
Collaborative filtering, as the core technology of recommendation systems, is currently facing the sparsityproblem of rating data. |
1917 |
融合物品文本信息可以有效的解决数据稀疏性问题,然而,目前的方法侧重于提取文本的单维特征,忽略了物品语义表示的多维特性。 |
This can be effectively solved through integrating item text information. However, current methods focus on extracting the one-dimensional features of the text, neglecting its multidimensional semantic features. |
1918 |
深度挖掘物品内容的多维特性可以更加精细化描述物品的语义信息,有助于提升推荐效果。 |
Digging deep-ly into the multidimensional semantic features of the text can improve the recommendations. |
1919 |
为此,本文提出基于胶囊网络的概率生成模型。 |
To help achieve this goal, aprobabilistic matrix factorization model based on multidimensional semantic representation learning is proposed in the present study. |
1920 |
模型利用胶囊网络挖掘文本的多维语义特征,并以正则化方式融入概率矩阵分解框架,建立用户与物品之间的内在关系。 |
The model uses a capsule network to mine the multidimensional semantic features of the text, and then integrates it in-to the probabilistic matrix decomposition framework using the regularization method to reveal hidden features linking usersand items. |
1921 |
实验结果表明本文提出的模型具有更高的评分预测精度。 |
Experimental results show that the proposed model has higher prediction accuracy. |
1922 |
遵循控制转发分离思想,软件定义无线传感器网络(Wireless Sensor Network,WSN)数据转发采用基于流的实现方式。 |
Following the idea of separation of control and forwarding, the data forwarding of software-defined WSN(Wireless Sensor Network)is implemented in a flow-based manner. |